

Clustering analysis of dynamical signatures and their evolution in high-resolution flare observations by DKIST

S. Riley^{1, 2}

²DKIST Ambassador

National Solar Observatory Seminar 2025 August 19

¹Montana State University, Department of Physics

Outline

- Introduction
 - Solar flares
 - Dynamical signatures
 - Science objectives
- 2. Analysis
 - ► *k*-means
- 2022 Dec 27
 - Flare overview
 - Clustering results
 - Epoch-driven approach

- 4. 2023 May 05
 - Flare overview
 - Clustering results
 - Evolution-driven approach
- 5. Concluding remarks

Anatomy of solar flares

Standard flare model

(Carmichael, 1964; Sturrock, 1966; Hirayama, 1974; Kopp & Pneuman, 1976)

- Free magnetic energy is released
- Energy transported down along the magnetic field lines
- Drives condensation and evaporation

Open questions

- What is the mechanism converting the energy?
- 2. How is the energy transported?

(Yadav et al., 2021)

Anatomy of solar flares

Energy transport from the corona to chromosphere

Non-thermal electrons

(Emslie et al., 2012)

Thermal conduction

(Gan et al., 1991; Longcope and Klimchuk, 2015)

Waves

(Flecther and Hudson, 2008; Reep and Russell, 2016)

Ion beams

(Vilmer et al., 2011)

Anatomy of solar flares

Energy transport from the corona to chromosphere

Non-thermal electrons

(Emslie et al., 2012)

Thermal conduction

(Gan et al., 1991; Longcope and Klimchuk, 2015)

Waves

(Flecther and Hudson, 2008; Reep and Russell, 2016)

Ion beams

(Vilmer et al., 2011)

A problem

- We can't directly observe hard x-rays at high spatial resolutions.
- Flare loops are made of strains

Anatomy of solar flares

Energy transport from the corona to chromosphere

Non-thermal electrons

(Emslie et al., 2012)

Thermal conduction

(Gan et al., 1991; Longcope and Klimchuk, 2015)

Waves

(Flecther and Hudson, 2008; Reep and Russell, 2016)

Ion beams

(Vilmer et al., 2011)

A problem

- We can't directly observe hard x-rays at high spatial resolutions
- Flare loops are made of strains

The workaround

Identify the signatures where we do have the spatial resolving power: the chromosphere.

Dynamical signatures

- Changes to the quiescent line profile
 - Line intensity
 - Line shift
 - Line width
 - Asymmetry

(Ferrente et al., 2024)

Dynamical signatures

- Changes to the quiescent line profile
 - Line intensity
 - Line shift
 - Line width
 - Asymmetry
- Spatial scales

Dynamical signatures

$$F = 10^{10} \frac{\text{erg s}^{-1}}{\text{cm}^2}, \quad E_0 = 10 \text{ keV}, \quad \delta = 3$$

$$F = 10^{10} \frac{\text{erg s}^{-1}}{\text{cm}^2}$$
, $E_0 = 10 \text{ keV}$, $\delta =$

Science objectives

Driving questions

- Q1 What **dynamical signatures** are associated with different evolutionary stages of individual heating events?
- Q2 What are the **temporal-spatial scales** relevant to these signatures?
- Q3 What are the **physical mechanisms** behind these dynamical signatures?

Analysis objective

To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Analysis objective

To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Finding the signatures

Clustering algorithm

Lo Intrinsic Layer

L₁ Optimized Layer

Analysis objective

To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Finding the signatures

Clustering algorithm

Lo Intrinsic Layer

L₁ Optimized Layer

Describing the evolution

Epoch-driven approach

Additional observations to define the heating history

Evolution-driven approach

Heating history is provided by ViSP observations

Goal: Minimize the "Within Cluster Distance"

Start: Initialize representatives $\mu_{i}^{(0)}$

For each iteration q,

$$c_i^{(q)} = \underset{1 \leq j \leq k}{\operatorname{argmin}} ||\mathbf{x}_i - \boldsymbol{\mu}_j^{(q)}||^2$$

$$\mu_j^{(q+1)} = \frac{1}{n_i^{(q)}} \sum_{i=1}^{n_j^{(q)}} \delta_{c_i j} \mathbf{x}_i$$

Stop: $\sqrt{||\mu^{(q+1)} - \mu^{(q)}||^2} \le 10^{-6}$

Optimized layer

Goal: Minimize the "Within Cluster Distance"

Start: Initialize representatives $\mu_{i}^{(0)}$

For each iteration q,

$$c_i^{(q)} = \underset{1 \leq j \leq k}{\operatorname{argmin}} ||\mathbf{x}_i - \boldsymbol{\mu}_j^{(q)}||^2$$

$$\boldsymbol{\mu}_{j}^{(q+1)} = \frac{1}{n_{j}^{(q)}} \sum_{i=1}^{n_{j}^{(q)}} \delta_{c_{i}j} \mathbf{x}_{i}$$

Stop: $\sqrt{||\mu^{(q+1)} - \mu^{(q)}||^2} \le 10^{-6}$

Optimized layer

Optimized layer

Goal: Minimize the "Within Cluster Distance"

Start: Initialize representatives $\mu_j^{(0)}$

For each iteration q,

$$c_i^{(q)} = \underset{1 \leq j \leq k}{\operatorname{argmin}} ||\mathbf{x}_i - \boldsymbol{\mu}_j^{(q)}||^2$$

$$\mu_j^{(q+1)} = \frac{1}{n_i^{(q)}} \sum_{i=1}^{n_j^{(q)}} \delta_{c_i j} \mathbf{x}_i$$

Stop: $\sqrt{||\mu^{(q+1)} - \mu^{(q)}||^2} \le 10^{-6}$

Flare overview

ViSP Observation Info

Ca II $\lambda 8542$ Observed Ca II H

Fe I

Slit Width 0.214"/pxl

Pxl Scale 0.0194"/pxl

 $85.6" \times 49.5"$ **FOV**

Step Cadence 15.67 s

Total time 1hr 45min

Clustering (Intrinsic layer)

Intensity maps

Intrinsic layer maps

Clustering (Intrinsic layer)

Intrinsic layers

Coupled layer

Clustering (Optimized layer)

2022 Dec 27

Clustering (Optimized layer)

Clustering (Optimized layer)

Only snapshots. We can't directly obtain the evolution

Epoch-driven approach

Analysis objective

To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Epoch-driven approach

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution $\Delta t = \text{ViSP Time} - \text{AIA Peak Time}$

- $ightharpoonup \Delta t < 0$ (Rise phase)
- $ightharpoonup \Delta t > 0$ (Decay phase)

(Adapted from Zhu et al., 2018)

Epoch-driven approach

Epoch-driven approach

Epoch-driven approach

Wrap up

In the **epoch-driven** approach we have:

- Identified dynamical signatures
- ► Identified the temporal-spatial scales of the signatures

From this analysis, we have answered **Q1** and **Q2** of our science questions.

Flare overview

ViSP Observation Info

Ca II $\lambda 8542$

Observed Na I D

Fe I

Slit Width 0.1071"/pxl

0.0194"/pxl Pxl Scale (Ca II)

Pxl Scale (Na I) 0.0239"/pxl

 $13.4" \times 60.7"$ **FOV**

Step Cadence Raster Cadence : 3.11 min Total time

2hr 44 min

1.5 s

2023 May 03

Flare overview

ViSP Observation Info

Ca II $\lambda 8542$

Observed : Na I D

Fe I

Slit Width : 0.1071"/pxl

Pxl Scale (Ca II) : 0.0194"/pxl

Pxl Scale (Na I) : 0.0239"/pxl FOV : 13.4" × 60.7"

Step Cadence : 1.5 s

Raster Cadence : 3.11 min

Total time : 2hr 44 min

Flare overview

ViSP Observation Info

Ca II $\lambda 8542$

Observed : Na I D

Fe I

Slit Width : 0.1071"/pxl

Pxl Scale (Ca II) : 0.1196"/pxl

Pxl Scale (Na I) : 0.1196"/pxl FOV : 13.4" × 9"

Step Cadence : 1.5 s

Raster Cadence : 3.11 min

Total time : 2hr 44 min

Preprocessing

Peak Frame

Each pixel contains the maximum integrated intensity

Quiet Frame

Each pixel contains the minimum normalized line core intensity

Clustering (Peak frame)

Clustering (Full sequence)

Evolution-driven (Island)

Wrap up

In the **evolution-driven** approach, we've identified two **spatially coherent** subgroups:

- 1. Impulsive (< 3.11 minutes)
 - On the Mainland (377 0.1" sq pxls)
 - ► Ca II, Na I enhancement
- 2. Persistent (> 10 minutes)
 - On the Island (207 0.1" sq pxls)
 - Only Ca II enhancement

From this analysis, we have answered **Q1** and **Q2** of our science questions.

Concluding remarks

Review

Clustering algorithm

 We efficiently identified dynamic signatures on DKIST spatial scales

Epoch-driven results

We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Evolution-driven results

We have explicitly tracked the distinct dynamic signatures

Concluding remarks

Review

Clustering algorithm

 We efficiently identified dynamic signatures on DKIST spatial scales

Epoch-driven results

We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Evolution-driven results

 We have explicitly tracked the distinct dynamic signatures

Next steps

- Apply the evolution-driven analysis to flare observations with higher cadence.
- Compare sequence of representative profiles to modeled spectra

Concluding remarks

Review

Clustering algorithm

 We efficiently identified dynamic signatures on DKIST spatial scales

Epoch-driven results

We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Evolution-driven results

We have explicitly tracked the distinct dynamic signatures

Acknowledgment

Funding for the DKIST
Ambassadors program is provided
by the National Solar Observatory,
a facility of the National Science
Foundation, operated under
Cooperative Support Agreement
number AST-1400450

Thank You

spencerriley@montana.edu