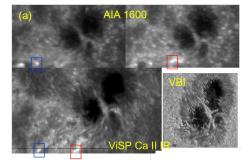
Identification of chromospheric dynamical signatures in solar flares with DKIST

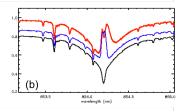
Spencer Riley^{1,2}

¹Montana State University, Department of Physics ²DKIST Ambassador, National Solar Observatory

Hinode-17/IRIS-15/Sphere-3 Conference 2024 Jul 26

Investigate the temporal-spatial scales of flare energy release, and dynamics at these scales, and use these signatures to diagnose associated physical mechanisms involved in flare loop heating.


Motivating Question


What dynamical signatures are associated with different evolutionary stages of solar flares?

Introduction

Dynamical signatures

- Atmospheric energy transfer mechanisms
 - Thermal conduction
 - Non-thermal electrons

Waves

etc...

Analysis methodology

N-D k-means

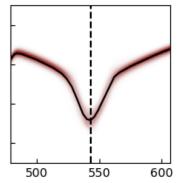
$$data_m = X_m = \begin{pmatrix} x_{m,1} & , \cdots , & x_{m,n} \end{pmatrix}$$

Goal: Minimize the "Within cluster distance" (\mathcal{D}) .

$$\mathcal{D} = \sum_{i=1}^{M} \sum_{j=1}^{k} \delta_{c_i,j} || X_i - \mu_j ||^2$$

Iterative approach

Update the label association


$$c_j = \underset{1 \le j \le k}{\operatorname{argmin}} ||X_i - \mu_j||^2$$

Update the decision centroid

$$\mu_j = \frac{1}{M_j} \sum_{i=1}^M \delta_{c_j,j} X_i$$

$$N = 97892$$

k-means

Analysis methodology

N-D k-means

$$data_m = X_m = \begin{pmatrix} x_{m,1} & , \cdots , & x_{m,n} \end{pmatrix}$$

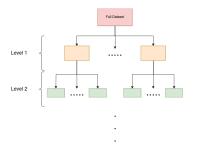
Goal: Minimize the "Within cluster distance" (\mathcal{D}) .

$$\mathcal{D} = \sum_{i=1}^{M} \sum_{j=1}^{k} \delta_{c_i,j} ||X_i - \mu_j||^2$$

Iterative approach

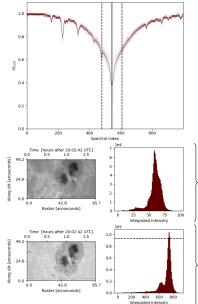
Update the label association

$$c_j = \underset{1 \le j \le k}{\operatorname{argmin}} ||X_i - \mu_j||^2$$


Update the decision centroid

$$\mu_j = \frac{1}{M_j} \sum_{i=1}^M \delta_{c_j,j} X_i$$

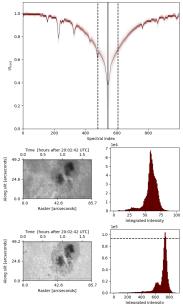
k-means

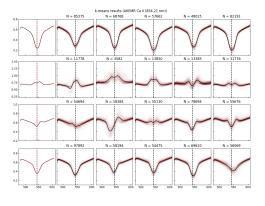

Hierarchical k-means

- Useful when the data has structure.
- Improved computational performance

2022 Dec 27 (AR 13176)

Intensity statistics and Quiescent Spectra (AKEMR Ca II (854.21 nm))

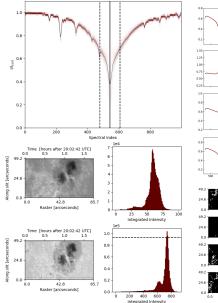


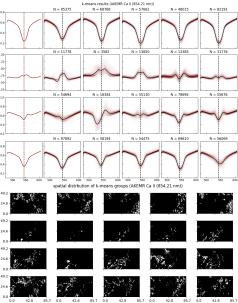

Intensity calculations with the spectral interval

Intensity calculations with the full spectrum

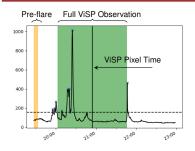
Current results 2022 Dec 27 (AR 13176)

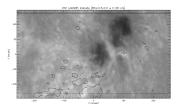
Intensity statistics and Quiescent Spectra (AKEMR Ca II (854.21 nm))





2022 Dec 27 (AR 13176)


Current results


Intensity statistics and Quiescent Spectra (AKEMR Ca II (854.21 nm))

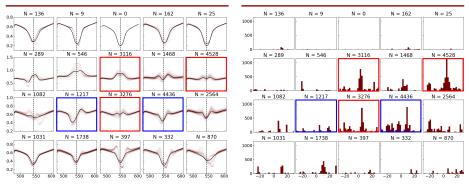
Spectral profiles in time

 $\Delta t = ViSP Obs Time - AIA Peak Time$

• $\Delta t > 0$ (Decay Phase)

Time analysis

• $\Delta t < 0$ (Rise Phase)

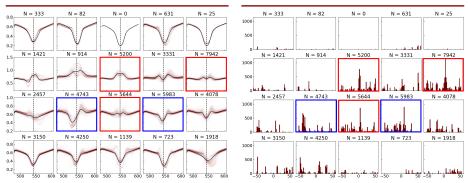

Filters

- ► AIA 1600 Peak \ge 2× Pre-flare
- Only Flaring Pixels

Time analysis

Filtered subset

\pm 30 minutes interval


• Centroid reversal groups most dense: $|\Delta t| \le 10$ minutes

• Asymmetric absorption groups most dense: $|\Delta t| \ge 10$ minutes

Time analysis

Filtered subset

\pm 60 minute interval

• Centroid reversal groups most dense: $|\Delta t| \le 10$ minutes

• Asymmetric absorption groups most dense: $|\Delta t| \ge 10$ minutes

Concluding remarks

Review

- From the k-means analysis :
 - We efficiently identified dynamic signatures on the DKIST scale

From the time analysis :

 We showed how the dynamic signatures are distrbuted in the AIA 1600 evolution of a flaring pixel

Next steps

- Utilize ViSP/VBI observations to conduct time analysis
- Compare the decision centroids to radiative transfer model derived spectra

Concluding remarks

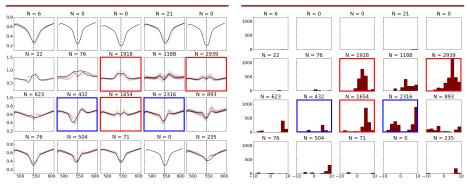
Review

- From the k-means analysis :
 - We efficiently identified dynamic signatures on the DKIST scale

From the time analysis :

 We showed how the dynamic signatures are distrbuted in the AIA 1600 evolution of a flaring pixel

Next steps


- Utilize ViSP/VBI observations to conduct time analysis
- Compare the decision centroids to radiative transfer model derived spectra

Thank You spencerriley@montana.edu

Backups

Filtered subset

\pm 10 minute interval

• Centroid reversal groups most dense: $|\Delta t| \le 10$ minutes

• Asymmetric absorption groups most dense: $|\Delta t| \ge 10$ minutes