Probing elementary scales of solar flare energetics with the Daniel K. Inouye Solar Telescope

Spencer Riley¹

¹Montana State University, Department of Physics

Ph.D. Candidacy Presentation 2024 December 02

Outline

1. Science background

- Solar flares
- Non-thermal electrons
- The chromosphere
- Dynamical signatures

2. Science objectives

- Research questions
- DKIST

3. 2022 Dec 27 (AR 13176)

4. Analysis

- Catalog Clustering Scheme
- Preliminary CCS results
- Epoch analysis
- Preliminary epoch results

5. Concluding remarks

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

Anatomy of solar flares

Standard flare model

(Carmichael, 1964; Sturrock, 1966;

Hirayama, 1974; Kopp and Pneuman, 1976)

- Free magnetic energy is released
- Energy transported down along the magnetic field lines
- Drives condensation and evaporation

Open questions

- What is the mechanism converting the energy?
- How is the energy transported?

(Yadav et al., 2021)

022 Dec 27 (AR 13176)

Analysis

Anatomy of solar flares

Energy transport from the corona to chromosphere

Non-thermal electrons

(Emslie et al., 2012)

Thermal conduction

(Gan et al., 1991; Longcope and Klimchuk, 2015)

Waves

(Flecther and Hudson, 2008; Reep and Russell, 2016)

Ion beams

(Vilmer et al., 2011)

(Yadav et al., 2021)

2022 Dec 27 (AR 13176)

Analysis

Properties

- Small collisional cross-section
- Energy released heats the chromosphere and produces hard x-rays

Non-thermal electrons

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

Non-thermal electrons

(Oka et al., 2018)

Science background

Science objectives

2022 Dec 27 (AR 13176

Analysis

Non-thermal electrons

(Oka et al., 2018)

Energy spectrum

Energy Flux

$$f(E) = \frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-\delta} \left[\frac{e^{-} e^{-1} e^{-1}}{Area}\right] \qquad F = \int_{E_0}^{\infty} E f(E) dE \left[\frac{e^{-} g e^{-1}}{Area}\right]$$

2022 Dec 27 (AR 13176)

Analysis

Non-thermal electrons

(Oka et al., 2018)

Energy spectrum

Energy Flux

$$f(E) = \frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-\delta} \left[\frac{e^{-} e^{-1} e^{-1}}{Area}\right] \qquad \mathbf{F} = \int_{E_0}^{\infty} E f(E) dE \left[\frac{e^{-} g e^{-1}}{Area}\right]$$

2022 Dec 27 (AR 13176)

Analysis

Non-thermal electrons

Properties

- Small collisional cross-section
- Energy released heats the chromosphere and produces hard x-rays

- Low spatial resolution
- Flare loops are made of many strains

(Dennis and Tolbert, 2019)

022 Dec 27 (AR 13176)

Analysis

The chromosphere

High spatial resolution

(Yadav et al., 2024)

Science background

Science objective

2022 Dec 27 (AR 13176)

Analysis

Science background The chromosphere

High spatial resolution

Spectral observations

 Provide information on the structure of the atmosphere

(Cauzzi et al., 2008)

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

The chromosphere

(Diaz Baso et al., 2019)

Science objectives

2022 Dec 27 (AR 13176)

Analysis

Dynamical signatures

- Changes to the quiescent line profile
 - Line intensity
 - Line shift
 - Line width
 - Asymmetry

Science background

Science objective

22 Dec 27 (AR 13176)

Analysis

Science background Dynamical signatures

Driving questions

- What dynamical signatures are associated with different evolutionary stages of individual heating events?
- What are the physical mechanisms behind these dynamical signatures?
- What are the temporal-spatial scales relevant to these physical mechanisms?

Science objectives **DKIST**

Notable features

- 4-meter primary mirror
- Adaptive optics

Instruments

- Visual Broadband Imager
- Visible Spectropolarimeter
- Visible Tunable Filter
- Diffraction-Limited Near-InfraRed Spectropolarimeter
- Cryogenic Near-InfraRed Spectropolarimeter

Science backgroun

Science objectives

2022 Dec 27 (AR 13176)

Analysis

Science objectives **DKIST**

Notable features

- 4-meter primary mirror
- Adaptive optics

Instruments

- Visual Broadband Imager
- Visible Spectropolarimeter
- Visible Tunable Filter
- Diffraction-Limited Near-InfraRed Spectropolarimeter
- Cryogenic Near-InfraRed Spectropolarimeter

Science backgroun

Science objectives

2022 Dec 27 (AR 13176)

Analysis

High-resolution

1" = 730 kilometers

Science background

Science objectives

2022 Dec 27 (AR 13176

Analysis

High-resolution

1" = 730 kilometers

Science background

Science objectives

022 Dec 27 (AR 13176)

Analysis

High-resolution

1" = 730 kilometers

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

1" = 730 kilometers

AIA 1600 (0.6" x 0.6")

HMI Cont (0.5" x 0.5")

High-resolution

ViSP (0.019" x 0.214")

• VBI (0.010" x 0.010")

Science background

Science objectives

2022 Dec 27 (AR 13176

Analysis

1" = 730 kilometers

AIA 1600 (0.6" x 0.6")

HMI Cont (0.5" x 0.5")

IRIS (0.167" x 0.333")

High-resolution

ViSP (0.019" x 0.214")

VBI (0.010" x 0.010")

Science background

Science objectives

022 Dec 27 (AR 13176

Analysis

High-resolution

1" = 730 kilometers

HXR Observations (10" x 10")

Science background

Science objectives

2022 Dec 27 (AR 13176

Analysis

High-resolution

1" = 730 kilometers

HXR Observations (10" x 10")

Science objectives 0000

2022 Dec 27 (AR 13176)

Overview

Intensity calculations with the spectral interval

Intensity calculations of the line core

00

2022 Dec 27 (AR 13176)

2022 Dec 27 (AR 13176)

Overview

AIA 1600Å

27-0ec-2022 20:02:38.130

l**ckground**

Science objectives

2022 Dec 27 (AR 13176)

Analysis 000000

Catalog Clustering Scheme

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Analysis

Catalog Clustering Scheme

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Two approaches

Epoch

 Additional observations to define the heating history

Evolution-driven

 Heating history is provided by ViSP observations

2022 Dec 27 (AR 13176)

Analysis

Catalog Clustering Scheme

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Hierarchical structure

- (L₀) Intensity binning
- (L₁ & L₂) k-means
- (L₃) Discrimination

Science background

2022 Dec 27 (AR 13176) oo Analysis

CCS (k-means)

Goal: Minimize the "Within Cluster Distance"

Start

Initialize the representatives

Iterate

- Update the label association
- Update the representative

Stop

 Representative converges on a location

2022 Dec 27 (AR 13176)

Analysis

CCS (k-means)

Goal: Minimize the "Within Cluster Distance"

Start

Initialize the representatives

Iterate

- Update the label association
- Update the representative

Stop

 Representative converges on a location

Science background

Science objective

22 Dec 27 (AR 131

Analysis

Goal: Minimize the "Within Cluster Distance"

Start

Initialize the representatives

Iterate

- Update the label association
- Update the representative

Stop

 Representative converges on a location

CCS (k-means)

Science background

Science objectives

022 Dec 27 (AR 13176)

Analysis

2022 Dec 27

Science background

Science objective

2022 Dec 27 (AR 1317)

Analysis

2022 Dec 27

2500 70 2000 2000 60 50 1500 1500 40 1000 1000 30 500 20 500 -50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Analysis

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

2022 Dec 27

Analysis

Science background

Science objectives

022 Dec 27 (AR 13176)

Analysis

2022 Dec 27

 Only snapshots. We can't directly obtain the evolution

Science background

Science objectives

022 Dec 27 (AR 13176)

Analysis

Analysis Epoch analysis

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution

Analysis Epoch analysis

Analysis objective

 To develop a method of characterizing large amounts of spectral data by the dynamical signatures and evolution $\Delta t = ViSP Time - AIA Peak Time$

- $\Delta t < 0$ (Rise phase)
- $\Delta t > 0$ (Decay phase)

(Adapted from Zhu et al., 2018)

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

2022 Dec 27 (±15 min)

Science background

Science objective

2022 Dec 27 (AR 13176)

Analysis

2022 Dec 27 (±15 min)

Analysis

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

2022 Dec 27 (±15 min)

Analysis

Science background

Science objectives

2022 Dec 27 (AR 13176)

Analysis

Analysis 2022 Dec 27 (±15 min)

Analysis 0000000

Analysis 2022 Dec 27 (±15 min)

Analysis 0000000

Wrapping up

Review

From the CCS

 We efficiently identified dynamic signatures on DKIST spatial scales

From the epoch analysis

 We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Wrapping up

2023 May 03

- Finite cadence!
- Observed a flare!
- 15× as much data!

Observation Details

- ViSP
 - Ca II λ8542
 - Na I D
- VBI
 - ► Hβ
 - Call K

2023 May 03

- Finite cadence!
- Observed a flare!
- 15× as much data!

Observation Details

- ViSP
 - Ca II λ8542
 - Na I D
- VBI
 - ► Hβ
 - Call K

Wrapping up

Proposed 2025

- Sit-N-Stare!
- Will Observe a flare!
- Higher Spatial resolution!

Observation Details

- ViSP
 - Ca II λ8542
 - Ηα
 - Na I D

VBI

► Hβ

2022 Dec 27 (AR 13176)

Review

From the CCS

 We efficiently identified dynamic signatures on DKIST spatial scales

From the epoch analysis

 We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Wrapping up

Next steps

- Develop the evolution-driven approach for the 2023 and 2025 data.
- Compare sequence of representative profiles to modeled spectra

022 Dec 27 (AR 13176)

Analysis

Review

From the CCS

 We efficiently identified dynamic signatures on DKIST spatial scales

From the epoch analysis

We showed how the dynamic signatures are distributed in the AIA 1600 evolution of a flaring pixel

Wrapping up

Next steps

- Develop the evolution-driven approach for the 2023 and 2025 data.
- Compare sequence of representative profiles to modeled spectra

Thank You spencerriley@montana.edu

2022 Dec 27 (AR 13176)

Analysis