The Precipitable-water Model Analysis Tool

An open-source suite for estimating precipitable water with low-cost instrumentation

> Spencer Riley¹, Vicki Kelsey², Kenneth Minschwaner¹ ¹New Mexico Institute of Mining and Technology

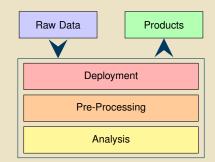
> > ²South Dakota School of Mines

5th Texas Weather Conference 2 Apr 2022

Introduction

A computational utility with the purpose of analyzing data to further understand the relationship between local atmospheric brightness temperature and regional precipitable water.

Roadmap 0

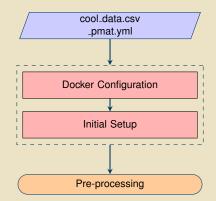

PMAT Suite Overview

Open source

Wide compatibility across local and cloud-based systems

The user interface is a file that stores:

- Sensor information
- Data source information
- Analysis parameters

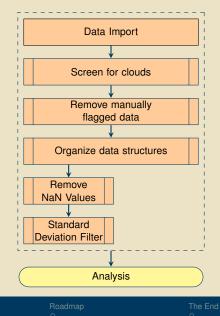


PMAT Suite Deployment

Packaged in Docker container

Requires raw data and the configuration file.

Deployment template is available
at template.pmat.app

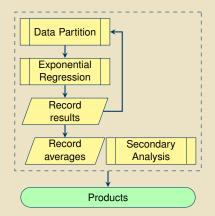


PMAT Suite Pre-processing

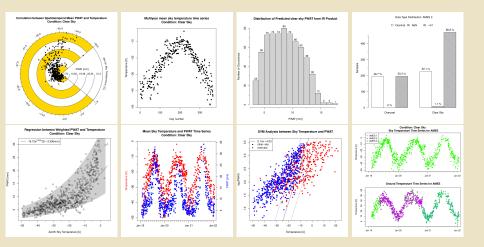
Collects regional atmospheric data from NWS radiosondes and ground stations

Organizes, filters, and computes averages for analysis

Standard Deviation Filter $\sigma_i > n \ \overline{\sigma_i}$


PMAT Suite Analysis

Primary Analysis


Iterative Regression Algorithm
 PWAT = Ae^{BTb}

Secondary Analysis

- Support Vector Machine
- Climatology
- Time Series

PMAT Suite Products

PMAT Suite

Roadmap 0

The End ○

Roadmap

V3.0

- Docker rollout
- Climatology analysis
- Support Vector Machine
- Module organization
- Full documentation

V4.0

- Monsoon prediction
- Automated system support
- Fourier Transform analysis
- Replace MesoWest database pull

Roadmap •

The End

Spencer Riley sriley@pmat.app

Vicki Kelsey vkelsey@pmat.app

Kenneth Minschwaner kminschwaner@pmat.app

Questions?

Project Page

Official Manual docs.pmat.app

PMAT Suite

Roadmap 0